
This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Hydrolysis of some mRNA 5'-Cap Analogs Catalyzed by the Human Fhit Protein - and Lupin ApppA Hydrolases

E. Bojarska^a; R. Kraciuk^a; J. Wierzchowski^b; Z. Wieczorek^c; J. Stępiński^d; M. Jankowska^d; E. Starzyńska^e; A. Guranowski^e; E. Darżynkiewicz^a

^a Department of Biophysics, University of Warsaw, Warsaw, Poland ^b Department of Organic Chemistry, Pedagogical University, Siedlee, Poland ^c Department of Physics and Biophysics, University of Agriculture and Technology, Olsztyn, Poland ^d Department of Chemistry, University of Warsaw, Warsaw, Poland ^e Department of Biochemistry and Biotechnology, University of Agriculture, Poznań, Poland

To cite this Article Bojarska, E. , Kraciuk, R. , Wierzchowski, J. , Wieczorek, Z. , Stępiński, J. , Jankowska, M. , Starzyńska, E. , Guranowski, A. and Darżynkiewicz, E.(1999) 'Hydrolysis of some mRNA 5'-Čap Analogs Catalyzed by the Human Fhit Protein - and Lupin ApppA Hydrolases', Nucleosides, Nucleotides and Nucleic Acids, 18: 4, 1125 — 1126

To link to this Article: DOI: 10.1080/15257779908041666 URL: http://dx.doi.org/10.1080/15257779908041666

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HYDROLYSIS OF SOME mRNA 5'-CAP ANALOGS CATALYZED BY THE HUMAN Fhit PROTEIN - AND LUPIN ApppA HYDROLASES

E. Bojarska^{1*}, R. Kraciuk¹, J. Wierzchowski², Z. Wieczorek³, J. Stępiński⁴, M. Jankowska⁴, E. Starzyńska⁵, A. Guranowski⁵ and E. Darżynkiewicz¹

¹Department of Biophysics, University of Warsaw, 02-089 Warsaw, Poland, ²Department of Organic Chemistry, Pedagogical University, 08-111 Siedlee, Poland ³Department of Physics and Biophysics, University of Agriculture and Technology, 10-957 Olsztyn, Poland, ⁴Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland, ⁵Department of Biochemistry and Biotechnology, University of Agriculture, 60-637 Poznań, Poland

ABSTRACT: Hydrolysis of the following four cap analogs: $m^7G(5^\circ)ppp(5^\circ)A$, $m^7G(5^\circ)ppp(5^\circ)m^6A$, $m^7G(5^\circ)ppp(5^\circ)m^{2^\circ}G$ and $m^7G(5^\circ)ppp(5^\circ)2^\circ dG$ catalyzed by homogeneous human Fhit protein and yellow lupin Ap₃A hydrolase has been investigated. The hydrolysis products were identified by HPLC analysis and the K_m and V_{max} values calculated based on the data obtained by the fluorimetric method.

Decapping process is the key step in mRNA decay pathway because the transcript undergoes rapid degradation after the cleavage of a cap structure¹. Various approaches were employed to control this process and several proteins were identified as decapping enzymes. It has been shown recently that Ap₃A hydrolase from yellow lupin seeds can cleave different dinucleoside triphosphates including cap analogs². Some cap analogs were also among the potential substrates of the human Fhit (fragile histidine triad) protein which behaves as a typical dinucleoside 5',5'''-P¹,P³-triphosphate hydrolase³.

Human Fhit protein was overexpressed in *Escherichia coli*⁴ and purified to homogeneity. Ap₃A hydrolase from yellow lupin seeds was isolated and purified to homogeneity as reported by Guranowski *et al.*². Cap analogs were synthesized at the Department of Biophysics by the methods described elsewhere^{5,6}.

Hydrolysis catalyzed by the human Fhit protein was determined at 30°C in an incubation mixture, 1 ml final volume, containing 50 mM Hepes/NaOH (pH 6.8), 0.5 mM

1126 BOJARSKA ET AL.

MnCl₂, varied substrate concentration (10-75 μ M) and rate-limiting amount of the enzyme. Hydrolysis catalyzed by the yellow lupin Ap₃A hydrolase (EC 3.6.1.29) was carried out at 37°C in an incubation mixture containing 50 mM Hepes/KOH (pH 8.2), 2 mM MgCl₂, 0.1 mM DTT, 10-75 μ M m⁷GpppA and rate limiting amount of the enzyme.

Time-dependent increase in fluorescence intensity at the emission maximum at 377 nm, with excitation at 294 nm (isosbestic point) has been recorded. The two kinetic parameters K_m and V_{max} were determined using the standard initial velocity method. The K_m values estimated for the Fhit protein are much higher [65 μM for m⁷GpppA, 252 μM for m⁷Gpppm⁶A, 304 μM for m⁷Gpppm²°G and 274 μM for m⁷Gppp2'dG] than the K_m for ApppA (1.3 μM). In case of the lupin Ap₃A hydrolase tested with m⁷GpppA, the K_m value is 30 μM, whereas the K_m for ApppA is 1.2 μM. The V_{max} values estimated for the Fhit/Ap₃A hydrolase vary between 0.223 mol/s for m⁷GpppA and 0.623 mol/s for m⁷Gppp2'dG. Generally, the m⁷G-containing dinucleoside triphosphates are much poorer substrates than ApppA or GpppG both for the human Fhit- and for the yellow lupin Ap₃A hydrolase. As concerns the preference of cleavage of the asymmetrical (hybrid) dinucleotides, it is clear that these two enzymes hydrolyze the triphosphate chain at the first phosphate from the bound m⁷-guanosine.

Supported by the Committee for Scientific Research, KBN project No. 6 P04A 034 09 and 6 P04A 062 15 (A.G. and E.S.) and partially BST-592/14/98 (J.S. and M.J.).

REFERENCES

- 1. Decker, C.J.; Parker, R. Trends Biochem. Sci. 1994, 19, 336-340
- Guranowski, A.; Starzyńska, E.; Bojarska, E.; Stępiński, J; Darżynkiewicz, E. Protein Expression Purif., 1996, 8, 416-422
- 3. Barnes, L. D.; Garrison, P.N.; Siprashvili, Z.; Guranowski, A.; Robinson, A.K.; Ingram, S.W.; Croce, C.M.; Ohta, M.; Huebner, K. *Biochemistry*, 1996, 35, 11529-11535
- 4. Brenner, Ch.; Pace, A. C.; Garrison, P.N.; Robinson, A.K.; Rosler, A.; Liu, X-H; Blackburn, G.M.; Croce, C.M.; Huebner, K.; Barnes, L.D. *Protein Engineering*, 1997, 10, 1461-1463
- Stępiński, J.; Bretner, M.; Jankowska, M.; Felczak, K.; Stolarski, R.; Wieczorek, Z.; Cai, A-L.; Rhoads, R.E.; Temeriusz, A.; Darżynkiewicz, E. Nucleosides Nucleotides, 1995, 14, 717-720
- 6. Jankowska, M.; Stępiński, J.; Stolarski, R.; Wieczorek, Z.; Haber, D.; Darżynkiewicz, E. Collect. Czech. Chem. Commun., 1996, 61, S197